Abstract

The penetration behavior of thermally evaporated Au on S(CH(2))(15)CH(3), S(CH(2))(15)CO(2)CH(3), S(CH(2))(15)CO(2)H, K-modified S(CH(2))(15)CO(2)CH(3), and K-modified S(CH(2))(15)CO(2)H self-assembled monolayers (SAM) on Au substrates is investigated. Gold is a particularly interesting metal since vapor-deposited Au atoms are known to pass through alkanethiolate SAMs on Au{111} substrates at room temperature. Here we show that it is possible to control Au penetration by adjusting the interactions between terminal groups. It is found that Au atoms evenly penetrate into the CH(3) and CO(2)CH(3) films, forming smooth buried layers below the organic thin films. For the CO(2)H film, although Au atoms can still penetrate through it, filaments and mushroomlike clusters form due to H-bonding between film molecules. In the case of the K-modified CO(2)CH(3) or CO(2)H films, however, most Au atoms form islands at the vacuum interface. These results suggest that van der Waals forces and H-bonds are not strong enough to block Au from going through but that ionic interactions are able to block Au penetration. The measurements were performed primarily using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM). The combination of these highly complementary probes provides a very useful strategy for the study of metal atom behavior on SAMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.