Abstract

The controlled growth of graphene by the chemical vapor deposition method is vital for its various applications; however, the reproducibility remains a great challenge. Here, using single-crystal graphene growth on a Cu surface as a model system, we demonstrate that a trace amount of H2O and O2 impurity gases in the reaction chamber is key for the large fluctuation of graphene growth. By precisely controlling their parts per million level concentrations, centimeter-sized single-crystal graphene is obtained in a reliable manner with a maximum growth rate up to 190 μm min-1. The roles of oxidants are elucidated as an effective modulator for both graphene nucleation density and growth rate. This control is more fundamental for reliable growth of graphene beyond previous findings and is expected to be useful for the growth of various 2D materials that are also sensitive to trace oxidant impurities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call