Abstract

Based on the sedimentary and tectonic background of the Termit Basin, this paper focuses on the Upper Cretaceous Yogou Formation and uses organic geochemistry, logging, oil testing and seismic data to analyze the primary control factors of the hydrocarbon accumulation and establish corresponding model in order to predict favorable exploration target zones of hydrocarbon reservoirs. This study demonstrates that the Upper Cretaceous Yogou Formation is a self-generation and self-accumulation type reservoir. The Yogou Formation hydrocarbon reservoirs in the Koulele area are controlled by four factors: (1) the source rock is controlled by a wide range of YS1-YS2 marine shale, (2) the sandstone reservoir is controlled by the YS3 underwater distributary channel and storm dunes, (3) migration of hydrocarbons is controlled by faults and the regional monocline structure, and (4) the accumulation of hydrocarbons is controlled by lateral seal. The structures in the western Koulele area are primarily reverse fault-blocks with large throws, and the structures in the east are dominantly fault-blocks with small throws (co-rotating and reverse) and a fault-nose. In the western Koulele area, where the facies are dominated by storm dunes on a larger scale, it is easier to form lithologic reservoirs of sandstone lens. In the eastern Koulele area, high-quality channel sandstone reservoirs, fault-blocks with small throws, and the monocline structure benefit for the formation of updip pinch out lithologic traps, fault lithologic reservoirs and fault-nose structural reservoirs. Future exploration targets should be focused in the western storm dunes zone and eastern distributary channel sand zone with small fault-blocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call