Abstract

The effect of synthesis parameters to the physical properties of pillared saponite and pillared montmorillonite was examined. Mol ratio of Al to clay mass in the range 1.0 - 5.0 and two different calcination methods; conventional calcination and microwave irradiation method are evaluated as controlling factors to evolution of basal spacing d001 , surface acidity, specific surface area, pore distribution and catalytic activity in phenol hydroxylation reaction. XRD, FTIR, and N2-adsorption/desorption analysis were used to characterize the materials. Results showed that pillarization produced higher basal spacing d001 and surface acidity and crystalinity of materials in all Al/clay ratio and in both of the calcination methods. In general, Al to clay mass ratio and calcination method remarkably influence to the basal spacing d001, surface acidity and material crystallinity, but the effect of these factors to catalyst activity in phenol hydroxylation depends on nature of clay. It is concluded that the activity as catalyst is affected by the presence of ionic species and surface acidity in the minerals. Keywords: Pillared smectite, surface acidity, calcination

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.