Abstract
With the ever-growing reliance on polymeric materials for numerous applications, new avenues to induce, design and control degradation are clearly important. Here, we describe a previously unreported approach to controlling enzymatic hydrolysis of high molecular weight branched polymers formed from the new free-radical polymer synthesis strategy transfer-dominated branching radical telomerisation (TBRT). Modifying the chemical nature of TBRT polymers may be accomplished through telogen selection and multi-vinyl taxogen (MVT) design, and we show telogen-driven control of enzyme-catalysed hydrolysis and the impact of careful placement of hydrolytically susceptible groups within readily synthesised MVTs. Our results indicate that utilising conventional free-radical chemistries and unsaturated monomers as feedstocks for highly branched polymer architectures has considerable potential for the design of future materials that degrade into very low molecular weight byproducts at variable and controllable rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.