Abstract

Model calculations indicate that chaotic current oscillations during anodic electrodissolution of copper into phosphoric acid may be controlled by applying a simple map-based algorithm. In the experiments, the unstable period-one and period-two orbits embedded in the chaotic attractor have been stabilized by small perturbations of the anodic potential. We present the results of an experimental test for a power law relating the average chaotic transient time to the size of maximum perturbation allowed during control. The reported experimental results are in good agreement with the theoretical predictions by Ott, Grebogi, and Yorke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.