Abstract
Cargo compartment fire has become the major security threat for cruising aircraft, the depressurization measurement could effectively suppress the cargo compartment fire through the reduction of the air pressure and oxygen concentration. The objective of this work is to study fire behavior characteristics in half confined chamber and high altitude laboratory at identical low atmospheric pressure, and explore the controlling effects of air exhaust condition, oxygen concentration. N-heptane pool fire experiments were conducted separately in Langfang low pressure chamber (altitude 50m) and Kangding airport laboratory (altitude 4290m) at 60 kPa air pressure, both assembled ISO-9705, but their gas supplying condition is different. Mass burning rate, gas composition, flame temperature, and radiant heat flux had been measured as the principal characteristic parameters for analysis. This paper reveals the variation characteristics of the fire behavior under different oxygen concentration but identical low atmospheric pressure. The gas composition of the chamber is controlled by the liquid fire and air intake quantity, the oxygen concentration of the chamber decreases with decreasing gas intake quantity. The mass burning rate increases and the mass burning time decreases with the increase of the oxygen concentration. The higher air intake quantity or the higher oxygen concentration could increase cargo compartment fire radiation intensity, and exacerbate the fire further propagation. However, under the low oxygen concentration condition, the liquid fire still have a higher flame temperature above a certain height. The depressurization measurement could increase the flame height and flame temperature may be caused the cabin fire-resistant liners layer is easier to burn through. The more reasonable adjustment of the cargo compartment air exhaust quantity and air pressure is very meaningful for the comprehensive fire suppression of cruising commercial airplanes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.