Abstract

Phage Mu is unique among transposable elements in employing a transposition enhancer. The enhancer DNA segment is the site where the transposase MuA binds and makes bridging interactions with the two Mu ends, interwrapping the ends with the enhancer in a complex topology essential for assembling a catalytically active transpososome. The enhancer is also the site at which regulatory proteins control divergent transcription of genes that determine the phage lysis-lysogeny decision. Here we report a third function for the enhancer - that of regulating degradation of extraneous DNA attached to both ends of infecting Mu. This DNA is protected from nucleases by a phage protein until Mu integrates into the host chromosome, after which it is rapidly degraded. We find that leftward transcription at the enhancer, expected to disrupt its topology within the transpososome, blocks degradation of this DNA. Disruption of the enhancer would lead to the loss or dislocation of two non-catalytic MuA subunits positioned in the transpososome by the enhancer. We provide several lines of support for this inference, and conclude that these subunits are important for activating degradation of the flanking DNA. This work also reveals a role for enhancer topology in phage development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.