Abstract

The Cu migration is controlled by using an optimized AlOx interfacial layer, and effects on resistive switching performance, artificial synapse, and human saliva detection in an amorphous-oxygenated-carbon (a-COx)-based CBRAM platform have been investigated for the first time. The 4 nm-thick AlOx layer in the Cu/AlOx/a-COx/TiNxOy/TiN structure shows consecutive >2000 DC switching, tight distribution of SET/RESET voltages, a long program/erase (P/E) endurance of >109 cycles at a low operation current of 300 μA, and artificial synaptic characteristics under a small pulse width of 100 ns. After a P/E endurance of >108 cycles, the Cu migration is observed by both ex situ high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy mapping images. Furthermore, the optimized Cu/AlOx/a-COx/TiNxOy/TiN CBRAM detects glucose with a low concentration of 1 pM, and real-time measurement of human saliva with a small sample volume of 1 μL is also detected repeatedly in vitro. This is owing to oxidation–reduction of Cu electrode, and the switching mechanism is explored. Therefore, this CBRAM device is beneficial for future artificial intelligence application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.