Abstract

Continuous-variable quantum key distribution (CVQKD) can provide detection efficiency, as compared to discrete-variable quantum key distribution (DVQKD). In this paper, we demonstrate a controllable CVQKD with the entangled source in the middle, contrast to the traditional point-to-point CVQKD where the entanglement source is usually created by one honest party and the Gaussian noise added on the reference partner of the reconciliation is uncontrollable. In order to harmonize the additive noise that originates in the middle to resist the effect of malicious eavesdropper, we propose a controllable CVQKD protocol by performing a tunable linear optics cloning machine (LOCM) at one participant’s side, say Alice. Simulation results show that we can achieve the optimal secret key rates by selecting the parameters of the tuned LOCM in the derived regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call