Abstract

Biased locomotion is a common feature of microorganisms, but little is known about its impact on self-organization. Inspired by recent experiments showing a transition to large-scale flows, we study theoretically the dynamics of magnetotactic bacteria confined to a drop. We reveal two symmetry-breaking mechanisms (one local chiral and one global achiral) leading to self-organization into global vortices and a net torque exerted on the drop. The collective behavior is ultimately controlled by the swimmers' microscopic chirality and, strikingly, the system can exhibit oscillations and memorylike features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call