Abstract
We calculate the entire distribution of the conductance P(G) of a one-dimensional disordered system --quantum wire-- subject to a time-dependent field. Our calculations are based on Floquet theory and a scaling approach to localization. Effects of the applied ac field on the conductance statistics can be strong and in some cases dramatic, as in the high-frequency regime where the conductance distribution shows a sharp cut-off. In this frequency regime, the conductance is written as a product of a frequency-dependent term and a field independent term, the latter containing the information on the disorder in the wire. We thus use the solution of the Mel'nikov equation for time-independent transport to calculate P(G) at any degree of disorder. At lower frequencies, it is found that the conductance distribution and the correlations of the transmission Floquet modes are described by a solution of the Dorokhov-Mello-Pereyra-Kumar equation with an effective number of channels. In the regime of strong localization, induced by the disorder or the ac field, P(G) is a log-normal distribution. Our theoretical results are verified numerically using a single-band Anderson Hamiltonian.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.