Abstract
The utilization of chemical sequence control in polymeric materials is key to enabling material design on par with biomacromolecular systems. One important avenue for scalable sequence-controlled polymers leverages the random copolymerization of distinct monomers, with the statistical distribution of the monomeric sequence arising from reaction kinetics following a first-order Markov process. Here we utilize the framework of the random phase approximation (RPA) to develop a theory for the phase behavior of symmetric polyelectrolyte coacervates whose chemical sequences are dictated by simple statistical distributions. We find that a high charge "blockiness" within the random sequences favors the formation of denser and more salt-resistant coacervates while simultaneously increasing the width of the two-phase region. We trace these physical effects to the increased cooperativity of Coulomb interactions that results from increased charge blockiness in oppositely charged polyelectrolytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.