Abstract

We performed theoretical and computational studies to determine the effect of an applied mechanical strain on the dynamic behavior of heterogeneous polymer gels undergoing the oscillatory Belousov-Zhabotinsky (BZ) reaction. In these spatially heterogeneous gels, the catalyst for the reaction is localized in specific patches within the polymer network and the BZ reaction only occurs within these catalyst-containing patches, which we refer to as BZ patches. We focused on a model for a one-dimensional system, and further assumed that the BZ reaction did not affect the degree of swelling within the gel. For gels having one and two BZ patches, we found that a tensile or compressive strain could induce transitions between the oscillatory and nonoscillatory, steady-state regimes of the system. For certain values of the BZ stoichiometric parameter f , these transitions could exhibit a hysteresis. In systems having two oscillating BZ patches, an applied strain could cause a switching between the in-phase and out-of-phase synchronization of the oscillations. The ability to controllably alter the dynamic behavior of BZ gels through mechanical deformations opens up the possibility of using these materials in the design of chemo-mechanical sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call