Abstract

Hyperbranched polymers with both highly branched structures and numerous vinyl functional groups have been synthesized via reversible activation/deactivation controlled polymerization of multifunctional vinyl monomers. By controlling the competition between propagation and reversible termination using a deactivation enhanced method, the growth rate of polymer chains is decreased and the onset of gelation is prevented until the system has achieved much higher levels of conversion than has previously been reported for nonenhanced systems. Here, we demonstrate this strategy by synthesizing highly branched, irregular dendritic polymers with a multiplicity of reactive functionalities such as vinyl and halogen functional groups, and controlled chain structure via deactivation enhanced atom transfer radical polymerization (ATRP) of a commercially available multifunctional vinyl monomerdivinylbenzene (DVB) and ethylene glycol dimethacrylate (EGDMA).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.