Abstract

The physical properties of the extracellular matrix (ECM) play an important role in regulating tissue-specific human mesenchymal stem cell (MSC) differentiation. Protein-coated hydrogels with tunable stiffness have been shown to influence lineage specific gene expression in MSCs. In addition, the control of cell shape – either through changing substrate stiffness or restricting spreading with micropatterning – has proved to be important in guiding the differentiation of MSCs. However, few studies have explored the interplay between these physical cues during MSC lineage specification. Here, we demonstrate geometric control of osteogenesis in MSCs cultured on micropatterned polyacrylamide gels. Cells cultured on fibronectin-coated gels express markers associated with osteogenesis in a stiffness dependent fashion with a maximum at ~30kPa. Controlling the geometry of single cells across the substrate demonstrates elevated osteogenesis when cells are confined to shapes that promote increased cytoskeletal tension. Patterning MSCs across hydrogels of variable stiffness will enable the exploration of the interplay between these physical cues and their relationship with the mechanochemical signals that guide stem cell fate decisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call