Abstract

The catalyst-free formation of silicon (Si) and germanium (Ge) core-shell and core-double shell nanowires (NWs) was studied for use as building blocks of high electron (hole) mobility transistors (HEMTs). Vertically aligned p-type Si (p-Si)/intrinsic Ge (i-Ge) core-shell NWs and p-Si/i-Ge/p-Si core-double shell NWs with uniform diameters were formed by combining nanoimprint lithography, Bosch etching, and chemical vapor deposition. The boron (B) doping process was used to prepare p-Si NWs. The hole gas accumulation could be reliably detected from the i-Ge shell region in the p-Si/i-Ge core-shell NW and p-Si/i-Ge/p-Si core-double shell NW arrays through the Fano resonance effect, showing that core-shell NW heterostructures can suppress impurity scattering and act as high-mobility transistor channels. This provides the possibility for the future creation of vertical high-speed transistors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call