Abstract

Carbons were prepared from resins synthesised using the phenolic precursors phenol, para methylphenol, para ethylphenol, para n-propylphenol, para isopropylphenol and 3,5-dimethylphenol. Loss of phenolic OH from these materials was followed using solid-state nuclear magnetic resonance. The surface areas of the carbons were determined using N 2 and CO 2 adsorption. No significant differences in the loss of phenolic OH were observed. Under the same carbonisation conditions, the para alkyl phenols gave carbons with wide micropores, while the phenol and 3,5-dimethylphenol gave carbons with narrow micropores. Grinding the cured resins prior to carbonisation was found to significantly increase the surface area of the carbons obtained, with the microporous surface area increasing rapidly with a fall in particle size, without a significant increase in burn-off. Higher carbonisation temperatures widened the micropore size distribution, as shown by fitting the CO 2 adsorption isotherm with the Dubinin–Astakhov equation. The ability to change the carbon micropore structure obtained from a simple, well defined precursor, has many potential applications in carbon molecular sieves, catalyst supports and the investigation of adsorption processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.