Abstract

Bdellovibrio bacteriovorus is a predatory bacterium that feeds on Gram-negative bacteria including a wide range of pathogens and thus has potential applications as a biocontrol agent. Owing to its unique life cycle, however, there are limited tools that enable genetic manipulation of B.bacteriovorus. This work describes our first steps toward engineering the predatory bacterium for practical applications by developing basic genetic parts to control gene expression. Specifically, we evaluated four robust promoters that are active during the attack phase of B.bacteriovorus. Subsequently, we tested several synthetic riboswitches that have been reported to function in Escherichia coli, and identified theophylline-activated riboswitches that function in B.bacteriovorus. Finally, we inserted the riboswitch into the bacterial chromosome to regulate expression of the flagellar sigma factor fliA, which was previously predicted to be essential for predation, and observed that the engineered strain shows a faster predation kinetics in the presence of theophylline.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.