Abstract
Hyperbolic phonon polaritons (HPhPs) sustained in polar van der Waals (vdW) crystals exhibit extraordinary confinement of long-wave electromagnetic fields to the deep subwavelength scale. In stark contrast to uniaxial vdW hyperbolic materials, recently emerged biaxial hyperbolic materials, such as α-MoO3 and α-V2 O5 , offer new degrees of freedom for controlling light in two-dimensions due to their distinctive in-plane hyperbolic dispersions. However, the control and focusing of these in-plane HPhPs remain elusive. Here, a versatile technique is proposed for launching, controlling, and focusing in-plane HPhPs in α-MoO3 with geometrically designed curved gold plasmonic antennas. It is found that the subwavelength manipulation and focusing behaviors are strongly dependent on the curvature of the antenna extremity. This strategy operates effectively in a broadband spectral region. These findings not only provide fundamental insights into the manipulation of light by biaxial hyperbolic crystals at the nanoscale but also open up new opportunities for planar nanophotonic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.