Abstract

Learning the optimal behavior is the ultimate goal in reinforcement learning. This can be achieved by many different approaches, the most successful of them are policy gradient methods. However, they can suffer from undesirably large updates of policies, leading to poor performance. In recent years there has been a clear trend toward designing more reliable algorithms. This paper addresses to examine different restriction strategies applied to the widely used Proximal Policy Optimization (PPO-Clip) technique. We also question whether the analyzed methods are able to adapt not only to low-dimensional tasks but also to complex, high-dimensional problems in control and robotic domains. The analysis of the learned behavior shows that these methods can lead to better performance compared to the original PPO-Clip algorithm, moreover, they are also able to achieve complex behavior and policies in high-dimensional environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.