Abstract
When measured with ac at kilohertz frequencies the quantized Hall resistance (QHR) of a quantum Hall effect (QHE) device is usually found to be current- and frequency-dependent. This is a limitation on its use as a quantum impedance standard. We develop a model for the principal ac losses arising in the QHE device and show how they are responsible for the observed QHR current and frequency coefficients. We believe that losses are mainly caused by dissipative ac charging of the device along its edges. Charging is induced by the passage of the Hall current and by capacitive coupling between an edge and any nearby conductor maintained at an ac potential different to that of the edge, as for example at shield potential. The loss power is proportional to frequency and increases more rapidly than the square of the applied voltage or current. We model losses in terms of in-phase loss currents, which are a function of the amplitude of the ac charge reaching or leaving edges. The QHR frequency coefficient is zero only when the loss current for one portion of the high-potential edge and that for a corresponding portion of the low-potential edge are equal and of opposite sign. We propose a simple method for approaching that balance condition: gates are located under the device edges and their ac potentials adjusted so that the QHR current coefficient, evaluated at a constant frequency, is zero. We report measurements of the residual QHR frequency coefficients obtained after adjustment for GaAs/GaAlAs devices of two different types. For five different devices of the most favourable type, the QHR frequency coefficients do not exceed ±2 parts in 108 per kilohertz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.