Abstract

In this paper, a new systematic controller synthesis methodology for use with highly nonlinear multivariable and nonautonomous systems with application to a class of multivariable nonlinear aerospace systems is presented. The procedure is applied to a typical liquid propellant engine, and the performance of the resulting new control system is presented. In this research, the nonlinear dynamic model of the engine, which includes both soft and hard nonlinearities, is developed. The systematic controller design procedure is based on describing function models of the engine coupled with a new multivariable exact model matching procedure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call