Abstract
This paper focuses on the control of bidirectional power flow in the electric shipboard power systems, especially in the Medium-Voltage Direct Current (MVDC) shipboard power system. Bidirectional power control between the main MVDC bus and the local zones can improve the energy efficiency and control flexibility of electric ship systems. However, since the MVDC system contains various nonlinear loads such as pulsed power load and radar in various subsystems, the voltage of the MVDC and the local zones varies significantly. This voltage variation affects the control performance of the bidirectional DC-DC converters as exogenous? disturbances. To improve the control performance regardless of uncertainties and disturbances, this paper proposes a novel controller design method of the bidirectional DC?C converters using L1 control theory and intelligent optimization algorithm. The performance of the proposed method is verified via large-scale real-time digital simulation of a notional shipboard MVDC power system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.