Abstract

The algebraic approach is applied to the HiMAT (Highly Maneuverable Aircraft Technology) control. The objective is to find a robust controller which guarantees robust stability and decoupled control of longitudinal model of a scaled remotely controlled vehicle version of the advanced fighter HiMAT. Control design is performed by decoupling the nominal multi-input multi-output system into two identical single-input single-output plants which are approximated by a 4th order transfer function. The algebraic approach is then used for pole placement design and the nominal closed-loop poles are tuned so that the peak of the µ-function is minimal. As an optimization tool, evolutionary algorithm Differential Migration is used in order to overcome the multimodality of the cost function yielding simple controller with decoupling for nominal plant which is compared with the D-K iteration through simulations of standard longitudinal manoeuvres documenting decoupled control obtained from algebraic approach for nominal plant as well as worst case perturbation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.