Abstract

Recent studies demonstrated the efficiency of feedback-based gating control in mitigating congestion in urban networks by exploiting the notion of macroscopic or network fundamental diagram (MFD or NFD). The employed feedback regulator of proportional-integral (PI)-type targets an operating NFD point of maximum throughput to enhance the mobility in the urban road network during the peak period, under saturated traffic conditions. In previous studies, gating was applied directly at the border of the protected network (PN), i.e. the network part to be protected from over-saturation. In this work, the recently developed feedback-based gating concept is applied at junctions located further upstream of the PN. This induces a time-delay, which corresponds to the travel time needed for gated vehicles to approach the PN. The resulting extended feedback control problem can be also tackled by use of a PI-type regulator, albeit with different gain values compared to the case without time-delay. Detailed procedures regarding the appropriate design of related feedback regulators are provided. In addition, the developed feedback concept is shown to work properly with very long time-steps as well. A large part of the Chania, Greece, urban network, modelled in a microscopic simulation environment under realistic traffic conditions, is used as test-bed in this study. The reported results demonstrate a stable and efficient behaviour and improved mobility of the overall network in terms of mean speed and travel time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.