Abstract

Chain-growth polymerizations such as free-radical polymerizations are characterized by four key processes:(i) initiation, (ii) propagation, (iii) chain transfer, and (iv) termination. If it is possible to minimize the contribution of chain transfer and termination during the polymerization, it is possible to achieve a level of control over the resulting polymer and achieve a predetermined number average molecular weight and a narrow molecular weight distribution (polydispersity). If such an ideal scenario can be created, the number of polymer chains that are produced is equal to the number of initiator groups; the polymerization will proceed until all of the monomer has been consumed and the polymer chain ends will remain active so that further addition of monomer will lead to continued polymerization. This type of polymerization was termed a ‘living’ polymerization by Szwarc in 1956 and represents one of the ultimate goals of synthetic polymer chemists. Flory determined that in the absence of termination, the number of propagating polymer chains must remain constant and that the rate of polymerization for each growing chain must be equal. In this situation, the number average degree of polymerization (DPn) and hence the molecular weight of the polymer can be predicted by simple consideration of the monomer to initiator ratio (see eqns (1) and (2), respectively). Several key criteria are used to elucidate the ‘living’ nature of a polymerization. For a polymerization to be considered ‘living’, the rate of initiation must exceed the rate of propagation. Therefore, all the propagating polymer chains are formed simultaneously and grow at the same rate. If this situation did not occur, the first chains formed would be longer than those initiated later and the molecular weight distribution of the propagating chains would broaden. In addition, an ideal ‘living’ or ‘immortal’ polymerization must not exhibit any termination of the propagating polymer chains over the lifetime of the reaction. Consequently, ‘living’ polymerizations are characterized by very narrow molecular weight distributions (Mw/Mn < 1.2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.