Abstract

The paper investigates continuously changing wrinkle patterns of thin films bonded to a gradient substrate. Three types of gradient substrates including exponential, power-law, and symmetry models are considered. The Galerkin method is used to discretize the governing equation of film bonded to gradient substrates. The wavelength and the normalized amplitude of the wrinkles for substrates of various material gradients are obtained. The numerical simulation based on the finite element method (FEM) is used to evolve the wrinkle patterns. The result agrees well with that of the analytical model. It is concluded that localization of wrinkle patterns strongly depends on the material gradient. The critical membrane force depends on both the minimum value of wrinkle stiffness and the gradient of wrinkle stiffness when the wrinkle stiffness is at its minimum. This work provides a better understanding for local wrinkle formation caused by gradient substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.