Abstract

A desirable microenvironment is essential for wound healing, in which an ideal moisture content is one of the most important factors. The fundamental function and requirement for wound dressings is to keep the wound at an optimal moisture. Here, we prepared serial polyurethane (PU) membrane dressings with graded water vapor transmission rates (WVTRs), and the optimal WVTR of the dressing for wound healing was identified by both in vitro and in vivo studies. It was found that the dressing with a WVTR of 2028.3 ± 237.8 g/m2·24 h was able to maintain an optimal moisture content for the proliferation and regular function of epidermal cells and fibroblasts in a three-dimensional culture model. Moreover, the dressing with this optimal WTVR was found to be able to promote wound healing in a mouse skin wound model. Our finds may be helpful in the design of wound dressing for wound regeneration in the future.

Highlights

  • The ability of a dressing to control water loss can be determined by the WVTR

  • Wound dressings with different WTVRs were observed to influence wound healing by altering the expressions of α -smooth muscle actin (α -SMA), proliferating cell nuclear antigen (PCNA) and E-cadherin as well as the production of epithelial growth factor (EGF), which resulted in changes in the function, proliferation and migration of fibroblasts and epidermal cells

  • To the best of our knowledge, this is the first study to demonstrate that a dressing with a WVTR of approximately 2028.3 g/m2·24 h is optimal and necessary for wound healing, and this data may be helpful in the design of wound dressing for wound regeneration in the future

Read more

Summary

Introduction

The ability of a dressing to control water loss can be determined by the WVTR. the wound surface moisture can be regulated through the use of various wound dressings with different WVTRs. Queen et al reported that a certain range of WVTRs could support adequate moisture conditions for wound healing without dehydration[3]. This level was suggested indirectly based on half of the evaporative water loss of a granulating wound, and no detailed data from animal experiments were presented. The moisture content of wounds was regulated by a series of polyurethane (PU) membrane dressings with different WVTRs. The optimal WTVR of a dressing for wound healing was determined using both in vitro and in vivo studies. We determined that the dressing with a WVTR of approximately 2028.3 g/m2·24 h could maintain the optimal moisture content for the proliferation and function of epidermal cells and fibroblasts in a three-dimensional culture model. To the best of our knowledge, this is the first study to demonstrate that a dressing with a WVTR of approximately 2028.3 g/m2·24 h is optimal and necessary for wound healing, and this data may be helpful in the design of wound dressing for wound regeneration in the future

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.