Abstract

Vertically aligned structures, which are a series of characteristic conformations with thickness-direction alignment, interconnection, or assembly of filler in polymeric composite materials that can provide remarkable structural performance and advanced anisotropic functions, have attracted considerable attention in recent years. The past two decades have witnessed extensive development with regard to universal fabrication methods, subtle control of morphological features, improvement of functional properties, and superior applications of vertically aligned structures in various fields. However, a systematic review remains to be attempted. The various configurations of vertical structures inspired from biological samples in nature, such as vertically aligned structures with honeycomb, reed, annual ring, radial, and lamellar configurations are summarized here. Additionally, relevant processing methods, which include the transformation of oriented direction, external-field inducement, template method, and 3D printing method, are discussed in detail. The diverse applications in mechanical, thermal, electric, dielectric, electromagnetic, water treatment, and energy fields are also highlighted by providing representative examples. Finally, future opportunities and prospects are listed to identify current issues and potential research directions. It is expected that perspectives on the vertically aligned structures presented here will contribute to the research on advanced multifunctional composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.