Abstract

The effects of varying the alkali metal cation in the high-temperature nucleophilic synthesis of a semi-crystalline, aromatic poly(ether ketone) have been systematically investigated, and striking variations in the sequence distributions and thermal characteristics of the resulting polymers were found. Polycondensation of 4,4′-dihydroxybenzophenone with 1,3-bis(4-fluorobenzoyl)benzene in diphenylsulphone as solvent, in the presence of an alkali metal carbonate M2CO3 ( M = Li, Na, K, or Rb) as base, affords a range of different polymers that vary in the distribution pattern of two-ring and three-ring monomer units along the chain. Lithium carbonate gives an essentially alternating and highly crystalline polymer, but the degree of sequence randomization increases progressively as the alkali metal series is descended, with rubidium carbonate giving a fully random and non-thermally crystallizable polymer. Randomization during polycondensation is shown to result from reversible cleavage of the ether linkages in the polymer by fluoride ions, and an isolated sample of alternating sequence polymer is thus converted to a fully randomized material on heating with rubidium fluoride.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call