Abstract
The objective of this study is to determine the conditions under which the inclusions present in liquid steel can act as heterogeneous nucleants for solidification. In order to study the factors that define the undercooling of a given metal/oxide couple, the undercooling of a pure iron sessile droplet in contact with Al2O3, ZrO2, and MgO substrates was measured under controlled oxygen partial pressures by observing droplet recalescence. The results showed that the undercooling of iron, in contact with a particular substrate, did not have a unique value, but was significantly affected by the oxygen content on the gas phase. For oxygen partial pressures between 10−21 and 10−19, the undercooling of iron on ZrO2 substrates was stable and around 290 °C. In the same range of oxygen partial pressure, the undercooling of iron on MgO substrates remained below 100 °C due to the low stability of this oxide. At lower oxygen contents, substrate decomposition might be the cause for the observed drop in the undercooling of iron on ZrO2 substrates to below 100 °C. The undercooling also decreased for increasing oxygen content as verified when the gas was changed from gettered Ar/Ar-H2 to CO/CO2 mixtures. The variation in undercooling was related to the wetting of the substrate by the liquid metal, where the deep undercooling observed in the ZrO2 experiments occurred when the highest contact angle between the liquid metal and the substrate was achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.