Abstract
Controlled ultrasonic tissue erosion has many clinical applications, including the placement of very precise sharply defined perforations in biological interfaces and membranes with focused ultrasound. With carefully chosen acoustic parameters, tissue can be rapidly eroded away at a constant etching rate. The maximum erosion rate for minimal propagated energy is obtained by using very short high intensity pulses. The etching rate is higher with shorter pulse durations. For short pulses less than 10 cycles of the drive frequency, an optimum pulse repetition rate exists which maximizes the etching rate. Higher gas saturation in the surrounding medium reduces the etching rate and reduces the spatial sharpness of the holes produced. Most of the erosion appears to be produced in the first several cycles of the therapy pulse. For example, a series of short (about 3 cycles) focused pulses of 2100 W/cm2 (Isppa) at 788 kHz can erode a very well defined 2 mm diameter hole in a 1 mm thick sample of fresh pork atrial posterior wall in about 1 min at the optimum pulse repetition rate (about 18 kHz). Controlled ultrasonic tissue erosion may provide an effective image guided noninvasive tool in treatment of neonatal patients with hypoplastic left heart syndrome. Without the mixing of oxygenated blood across perforations placed in the atrial septum, these infants do not survive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.