Abstract

Organic molecules with tunable fluorescence quantum yield are attractive for opto-electronic applications. A fluorophore with tunable fluorescence quantum yield should be a better choice for a variety of applications that demand fluorophores with different quantum yields. Here organic emitters with a continuous bell-shaped fluorescence yield profile would be promising in view of sustainability and reusability; however, fluorophores with these properties are rarely reported. A bis-indole derivative, 3,3'-bisindolyl(phenyl)methane (BIPM), was synthesised and found to undergo a unique 'rise-and-fall' profile in fluorescence yield with a compositional change of the 1,4-dioxane (DiOx)-H2O solvent system. A predominant interplay of two contrasting factors, (a) polarity and proticity induced emission enhancement and (b) aggregation caused fluorescence quenching, on either side of a crossover solvent composition (∼50% fW), resulted in a continuous bell-patterned fluorescence yield profile. Interestingly, these two factors could be observed individually or simultaneously by adjusting the H2O fraction. Detailed spectroscopic, electron microscopic and computational studies have been performed to substantiate the photophysics behind the solvent regulated modulation of fluorescence quantum yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.