Abstract

Control of topological spin textures in magnetic systems may enable future spintronic applications. Magnetic field pulses can switch the vortex polarity1 or the winding number of magnetic bubbles2. Thermal energy can reverse the helicity of skyrmions3 and induce the transformation between meron and skyrmion by modifying the in-plane anisotropy4,5. Among the various topological spin textures, skyrmions6,7 and antiskyrmions8-10 are nanometric spin-whirling structures carrying integer topological charges (N) of -1 and +1 (refs. 7,11,12), respectively, and can be observed in real space8,13. They exhibit different dynamical properties under current flow14-18, for example, opposite signs for the topological Hall effect. Here we observe, in real space, transformations among antiskyrmions, non-topological (NT) bubbles and skyrmions (with N of +1, 0 and -1, respectively) and their lattices in a non-centrosymmetric Heusler magnet, Mn1.4Pt0.9Pd0.1Sn, with D2d symmetry. Lorentz transmission electron microscopy images under out-of-plane magnetic fields show a square lattice of square-shaped antiskyrmions near the Curie temperature and a triangular lattice of elliptically deformed skyrmions with opposite helicities at lower temperatures. The clockwise and counter-clockwise helicities of the skyrmions originate from Dzyaloshinskii-Moriya interactions with opposite signs along the [100] and [010] directions, respectively. A variation of the in-plane magnetic field induces a topological transformation from antiskyrmions to NT-bubbles and to skyrmions, which is accompanied by a change of the lattice geometry. We also demonstrate control of the helicity of skyrmions by variations of the in-plane magnetic field. These results showcase the control of the topological nature of spin configurations in complex magnetic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.