Abstract
Se/Te alloy and Te nanowires (NWs) with different morphologies were synthesized through a novel, controllable solution-phase method. Sodium dodecylbenzene sulfonate was employed as a surfactant to control the reaction rate in the synthesis. Through reaction process dynamics control, both "bending" and "V-shaped" Se/Te alloy NWs were controllably produced. The phase structures and morphologies of the Se/Te and Te products were investigated with XRD, TEM, and HRTEM. The formation mechanisms of the NWs were investigated on the basis of the experimental results. The significance of these results lies in the important implications concerning the potential use of these NWs materials for nanoscale electronic devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.