Abstract

Hybrid nanospheres made of carbon-coated iron oxides (Fe3O4) have attracted attention as high-performance electrode materials for supercapacitors. Herein, we report a simple yet effective method to fabricate Fe3O4 particles coated with nitrogen-doped carbon (Fe3O4–NC) by a strategy combining polymerization and carbonization. The materials are characterized using scanning electron microscopy-energy dispersive X-ray (SEM-EDX), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and electrochemical techniques including cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS). The results show that the Fe3O4 nanoparticles are completely encapsulated by the nitrogen-doped carbon materials, and the nanosized sphere-like Fe3O4–NC materials can deliver a capacitance of 346 F g–1 at 5 mV s–1, with 97% of the initial specific capacitance after 5000 cyc...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.