Abstract

Nanoalloy shows significant advantages and broad application prospects in chemical catalysis, due to the possessed high specific surface energy and abundant active sites can greatly promote their catalytic performance. In this work, morphology-controlled Cu-Sn alloy nanosheet arrays supported on carbon fiber paper (CP) substrate (Cu-Sn/CP) have been developed by a facile one-step electrodeposition technique at room temperature for the first time. Benefiting from the large active surface area, considerable ion transport channels and strong synergistic catalytic effect between Cu and Sn, the as-prepared Cu-Sn/CP served as a self-supported electrode for efficient nonenzymatic glucose sensing. Under optimized conditions, Cu-Sn/CP electrode offers wide linear ranges of 0.0005–2.0 mM and 2.0–10.0 mM, respectively. The detection limit is as low as 0.061 μM (S/N = 3). Cu-Sn/CP electrode also exhibited excellent selectivity and stability. Additionally, the proposed sensor is proven to be suitable for the detection of glucose in human serum samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.