Abstract

In this work, coral-like CuO dendrites were successfully synthesized by a solvothermal method in the mixed solvent of distilled water and ethanol with assistance of dodecyl trimethyl ammonium bromide (DTAB). The products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analysis techniques, to investigate their structure and morphology. The coral-like CuO dendrites were about 1 μm in length, with many dendrites pointing to a common center. The influence of experimental conditions on morphology, such as volume ratio of water to ethanol, surfactant DTAB and molar ratio of Na₂CO₃ and Cu(CH₃COO)₂, was also discussed. Time-dependent experiment was carried out to explore the formation mechanism while a "particle-sheet-dendrite (PSD)" mechanism was proposed to explain the growth process. The as-prepared CuO dendrites were used to degrade methylene blue (MB) under visible light irradiation in the presence of H₂O₂, where over 98% of methylene blue (MB) was degraded in 1 h. Results from the study demonstrated that the as-prepared coral-like CuO dendrites exhibited enhanced photocatalytic performance and excellent stability and reusability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call