Abstract

Lead halide perovskites with well-defined morphology have attracted attention for their unique properties as a promising new class of semiconductor materials in photovoltaics and optoelectronics. However, controlling morphologies and compositions of perovskite nanostructures with improved stability, especially for double cation lead halide perovskite, still remains a challenge. Here, we demonstrate a colloidal synthetic approach for direct synthesis of stable single-crystal formamidinium (FA) cesium double cation lead halide FA0.33Cs0.67PbBr3–xIx (0 ≤ x ≤ 3) perovskite nanostructures with controllable morphology over a wide range of halide compositions, without using a previous anion-exchange process. The presence of FA alloyed in the A site for the pure cesium lead halide perovskite structure can stabilize the nanocrystals while delivering a better balance between structure and composition. On the basis of the FA0.33Cs0.67PbBr3–xIx alloy perovskite system, we achieved nanowires and nanosheets with high y...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.