Abstract

An original xanthate possessing a vinyl ester polymerizable function, namely vinyl 2-[(ethoxycarbonothioyl)sulfanyl]propanoate (Xa2), was synthesized. It was implemented as a chain transfer agent (CTA) to design branched polymers based on vinyl acetate (VAc) by self-condensing vinyl copolymerization (SCVC) by reversible addition–fragmentation chain transfer (RAFT). The branching density as well as the length of the branches were efficiently tuned by adjusting the total initial concentration of polymerizable functions C0 = [VAc]0 + [Xa2]0 and the ratio C0/[Xa2]0. Additionally, Xa2 was also homopolymerized to provide hyperbranched oligomers. These precursors were used as multifunctional CTAs to control a subsequent polymerization of VAc, affording starlike poly(vinyl acetate)s (PVAcs). All the products were characterized by 1H NMR spectroscopy, quadruple detection size exclusion chromatography and differential scanning calorimetry. Reference samples consisted of linear PVAcs which were synthesized using a homologue non-polymerizable xanthate. As expected, the intrinsic viscosity and the glass transition temperature increased when either the number of branches or their length increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call