Abstract

Au-Fe3O4 hybrid hollow spheres have been successfully synthesized by a one-pot process via the hydrothermal treatment of FeCl3, HAuCl4, citrate, urea, and polyacrylamide (PAM). The amount of Au nanoparticles located in the hybrid hollow spheres can be tuned by changing the molar ratio of Au/Fe precursors. A possible synthetic mechanism of the Au-Fe3O4 hybrid hollow spheres has been proposed. The obtained hybrids exhibit not only a superior surface-enhanced Raman scattering (SERS) sensitivity, but also an excellent catalytic activity. The detection limit of the Au-Fe3O4 hybrid hollow spheres (the Au/Fe molar ratio is 0.2, Au-Fe3O4-0.2) for R6G can reach up to 10(-10) M, which can meet the required concentration level for ultratrace detection of analytes using SERS. Furthermore, the catalytic experiments of the Au-Fe3O4-0.2 hybrid hollow spheres demonstrate that the model of 4-nitrophenol (4-NP) molecules can be degraded within 3 min and the catalytic activity can be recovered without sharp activity loss in six runs, which indicates their superior catalytic degradation activity. The reason may be due to the highly efficient partial charge transfer between Au and Fe3O4 at the nanoscale interface. The results indicate that the bifunctional Au-Fe3O4 hybrid hollow spheres can serve as promising materials in trace detection and industrial waste water treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.