Abstract

The reaction of [Ti(mu-ONep)(ONep)3]2 (ONep = OCH2C(CH3)3) with a series of heterocyclic methanol derivatives [tetrahydrofurfuryl alcohol (H-OTHF), thiophene methanol (H-OTPM), or 2-pyridylcarbinol (H-OPy)-collectively termed H-OR*], led to the isolation of a novel family of OR*-substituted titanium alkoxide precursors. Independent of the initial stoichiometry for the H-OTHF reaction, a monosubstituted, dinuclear species was isolated as [(ONep)3Ti(muc-OTHF)]2 (1). For 1, each Ti was octahedrally (Oh) bound by three terminal ONep ligands, one bidentate bridging OTHF ligand (muc-OTHF), and an oxygen from the other muc-OTHF ligand. For the OTPM derivatives, the product was identified as [(ONep)3Ti(mu-OTPM)]2 (2). For this ligand, the soft S atom does not bind to the Ti but the O atom does act as a bridge between the two trigonal bipyramidal bound Ti metal centers. The OPy system yielded (OPy)2Ti(OR)2 independent of the OR and the stoichiometry used [OR = ONep (3), OCHMe2 (4), OCMe3 (5)]. For 3-5, the two OPy ligands chelate to the Oh-bound Ti metal center with two terminal OR ligands. Compounds 1-5 were fully characterized using a variety of analytical techniques. An initial investigation of the proposed chemical stability of the '(OPy)2Ti' moiety of 3-5 to alcoholysis exchange pathways involving (i) alkyl alcohols, (ii) aryl alcohols, (iii) substituted phenols, (iv) H-OR* derivatives, and (v) silanols proved successful through the isolation of a novel family of structurally characterized (OPy)2Ti(OR')2 (7-24) compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.