Abstract

Fe3O4 nanostructures with different morphologies, including uniform nanoparticles, nanorods and nanowire bundles, have been successfully synthesized via a facile hydrothermal route. Based on the observation of TEM images, the growth mechanism of one-dimensional Fe3O4 nanostructures is in accordance with Ostwald ripening process. From the hysteresis loops of as-prepared Fe3O4 products, we found that the morphology has great influence on the magnetic properties. The uniform Fe3O4 nanoparticles have higher saturation magnetization and lower coercivity than that of Fe3O4 nanorods and nanowires bundles. These phenomena attribute to the high shape anisotropy of nanorods and nanowire bundles, which prevent them from magnetizing in directions other than along their easy magnetic axes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.