Abstract

The unique and fascinating properties of one-dimensional (1D) Zn) nanostructures have triggered tremendous interest in exploring their possibilities for future electronic and photonic device applications. This paper provides current information on the progress of ZnO nanostructure grown by metalorganic chemical vapor deposition (MOCVD); it covers issues ranging from controlled synthesis of various ZnO nanostructures to their properties and potential applications. The unique features of MOCVD have been exploited to grow high-quality 1D ZnO nanostructures with tunable sizes, enabling the study of excitonic dynamics in low-dimensional nanostructures and size-dependent quantum confinement. A better understanding of the growth behaviors of ZnO nanostructures—particularly the anisotropic surface energy and adsorbate-surface interaction with regard to the crystal planes—allows control over the positions, morphologies, and surface polarities of the ZnO nanostructures as appropriate for device integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.