Abstract

Gold nanoparticles were synthesized by laser ablation of a gold metallic disc at wavelengths of 532 nm and 355 nm with 7 ns pulse duration in the pure water. The colloidal gold nanoparticles were characterized by ultraviolet-visible absorption spectroscopy, transmission electron microscopy, and fluorescence spectrometry. The presence of a surface plasmon resonance peak around ∼ 524 nm indicates the formation of gold nanoparticles. The formation efficiencies of gold nanoparticles in colloids were found to increase when ablating the gold metallic disc with a laser having a longer wavelength. The size distributions of the gold nanoparticles thus produced were measured by transmission electron microscopy. A reduction in mean diameter of the particles was observed with a decrease in the laser wavelength under the irradiation at a high fluence of 25 mJ/pulse. The fluorescence spectroscopy demonstrated that these gold nanoparticles are fluorescent, showing a strong blue emission intensity at 458 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.