Abstract

Hierarchical cobalt assemblies such as spheres, flowers with dendritic petals, and flowers with sharp petals are successfully synthesized via a facile liquid-phase reduction method by simply adjusting the reaction conditions. The morphology evolution process and transformation mechanism from spheres to dendrites and finally to flowers have been systematically investigated. It is determined that coercivity Hc depends more on sample size than on shape anisotropy, while saturation magnetization Ms is greatly affected by pinned surface magnetic moment. Even at a thinner thickness, as-synthesized cobalt samples exhibit stronger microwave absorbing ability compared with reported cobalt in the same frequency band. Especially, the cobalt flowers with dendritic petals exhibit the strongest absorption in middle frequency because incident wave and reflected wave are totally canceled at matching thickness. The architectural design of material morphologies is critical for improving properties toward future application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.