Abstract

Vanadium oxides (V3O7·H2O and VO2) with different morphologies have been selectively synthesized by a facile hydrothermal approach using glucose as the reducing and structure-directing reagent. The as-obtained V3O7·H2O nanobelts have a length up to several tens of micrometers, width of about 60–150 nm and thickness of about 5–10 nm, while the as-prepared VO 2 (B) nanobelts have a length of about 1·0–2·7 μm, width, 80–140 nm and thickness, 2–8 nm. It was found that the quantity of glucose, the reaction temperature and the reaction time had significant influence on the compositions and morphologies of final products. Vanadium oxides with different morphologies were easily synthesized by controlling the concentration of glucose. The formation mechanism was also briefly discussed, indicating that glucose played different roles in synthesizing various vanadium oxides. The phase transition from VO2(B) to VO2(M) were investigated and the phase transition temperature of the VO2(M) appeared at around 68 °C. Furthermore, the electrochemical properties of V3O7·H2O nanobelts, VO2(B) nanobelts and VO2(B) nanosheets were investigated and they exhibited a high initial discharge capacity of 296, 247 and 227 mAh/g, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.