Abstract

Herein, we developed a synthetic strategy to functionalize Ni-S nanostructures (NS) using a facile precipitation method at moderate temperature. The surface functionality of NS is controlled by varying amount of mixed surfactants to achieve the pH-responsive selective adsorption of anionic and cationic dyes and the adsorption of ciprofloxacin (CIP) and tetracycline (TC) antibiotics. Powder XRD diffraction pattern revealed the phase of NS was changed from α-NiS to mixed phases after functionalization. The surface area of functionalized NS was significantly enhanced by ~5 times of that unfunctionalized NS as 6.6 m2g−1 to 30.3 m2g−1. The NS selectively adsorbed methyl orange (MO) at pH 4.5 and methylene blue (MB) at pH 11.5 with separation efficiency values of 94.2% and 97.9% respectively. The maximum adsorption capacity for MO, MB, TC and CIP are obtained as 1526.3, 1031.2, 1540.8 and 632.4 mg g−1, respectively. The electrostatic interaction is predominantly involved in the adsorption of dyes whereas adsorption of antibiotics changed to hydrogen bonding and metal coordination. Thermodynamics parameters indicated exothermic and spontaneous adsorption of dyes. The optimized adsorbent is easily recyclable. Thus, the developed strategy of functionalization of nanostructures unveils a practical approach towards selective and efficient adsorption of organic pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call