Abstract
The ability to analyse shear-wave anisotropy in a mine environment is greatly aided by using multiple source orientations of a reproducible, impulsive shear-wave source. The analysis of what is probably the first controlled source shear-wave experiment in a mine environment demonstrates clearly that shear-wave polarizations and time delays between split shear-wave arrivals are reliably measured because of the use of multiple source orientations rather than a single shear-wave source. Reliability is further aided by modelling the shear-wave source radiation pattern, which allows for the unequivocal discrimination between seismic raypaths where shear-wave splitting did and did not occur. The analysis also demonstrates the great importance of high reproducibility of the seismic source for the use of shear waves in time-lapse surveys to monitor changes in a rockmass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.